Zhiwei SONG

Adjunct Associate Professor

+65 6407 0844


Adjunct Associate Professor, Department of Biochemistry, Yong Loo Lin School of Medicine, NUS.
Principal Scientist, Bioprocessing Technology Institute, A*STAR.


Degree and Institution Year(s)
University of Michigan, Ann Arbor, Michigan (USA) 1987-1992
Institute of Microbiology, Graduate School of Chinese Academy of Sciences. Beijing, China 1983-1986
Department of Biology, Hebei University, Baoding (China) 1978-1982

Professional Experience

Position and Institute Year(s)
Adjunct Associate Professor, Department of Biochemistry, Yong Loo Lin School of Medicine, NUS 2013 - Present
Principal Scientist, Bioprocessing Technology Institute, A*STAR 2013 - Present
Senior Scientist, Bioprocessing Technology Institute, A*STAR 2002 - 2013
Research fellow, Biotechnology Process Engineering Center (BPEC),
Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA.
2001 - 2002
Post-doctoral associate, Biology Department, MIT, Cambridge, USA. 1994 - 2001

Research Interest

Zhiwei Song’s laboratory focuses on:

*Protein glycosylation in mammalian cells
*Structure and function of nucleotide sugar transporters
*Genetic engineering of the glycosylation pathways in CHO cells for production of recombinant therapeutics
*Expression and production of recombinant glycoproteins therapeutics, including antibodies, in CHO cells

Selected Publications

  1. Chan KF, Shahreel W, Wan C, Teo G, Hayati N, Tay SJ, Tong WH, Yang Y, Rudd PM, Zhang P. and Song Z. (2016) Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol J. 11(3):399-414. doi: 10.1002/biot.201500331

  2. Haryadi R, Ho S., Kok YJ, Pu HX, Zheng L., Pereira NA, Li B., Bi X., Goh LT, Yang Y., and Song Z. (2015) Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS ONE 10(2): e0116878. doi:10.1371/journal. pone.0116878

  3. Chan KF, Goh JSY, and Song Z. (2014) Improving sialylation of recombinant biologics for enhanced therapeutic efficacy. Pharmaceutical Bioprocessing 2(5):363-366 (Editorial)

  4. Goh JS, Liu Y, Chan KF, Wan C, Teo G, Zhang P, Zhang Y, Song Z. (2014) Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Bioengineered 5(4):462-466.

  5. Pereira NA, Pu HX, Goh H, Song Z. (2014) Golgi phosphoprotein 3 mediates the Golgi localization and function of protein O-linked mannose β-1,2-Nacetlyglucosaminyltransferase 1. J Biol Chem. 289(21):14762-70.

  6. Goh JS, Liu Y, Liu H, Chan KF, Wan C, Teo G, Zhou X, Xie F, Zhang P, Zhang Y, Song Z. (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J.9(1):100-9.

  7. Haryadi R, Zhang P, Chan KF, Song Z. (2013) CHO-gmt5 a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Bioengineered 4(2): 90-94.

  8. Song Z. (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Molecular Aspects of Medicine (JMAM) 34:590-600. (Invited Review).

  9. Zhang P, Haryadi R, Chan KF, Teo G, Goh J, Pereira NA, Feng H, Song Z. (2012) Identification of functional elements of the GDP-Fucose transporter SLC35C1 using a novel CHO mutant. Glycobiology 22(7): 897-911.

  10. Zhang P, Tan DL, Heng D, Wang T, Mariati, Yang Y. and Song Z. (2010) A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab. Eng. 12(6):526-536.

  11. Chan KF, Zhang P, Song Z. (2010) Identification of essential amino acid residues in the hydrophilic loop regions of the CMP-sialic acid transporter and UDP-galactose transporter. Glycobiology 20(6):689-701.

  12. Goh J, Zhang P, Chan KF, Lee MM, Lim SF, and Song Z. (2010) RCA-I-resistant CHO mutant cells contain dysfunctional GnT I and expression of GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metab. Eng. 12(4):360-368.

  13. Pereira NA and Song Z. (2008) Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun. 377(3):873-7.

  14. Lim SF, Lee MM, Zhang P and Song Z. (2008) The Golgi CMP-sialic acid transporter: A new CHO mutant provides functional insights. Glycobiology 18(11):851-60.

  15. Yun CY, Liu S, Lim SF, Wang T, Chung BY, Jiat Teo J, Chuan KH, Soon AS, Goh KS, Song Z. (2007) Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metab. Eng. 9:406-18.

  16. Lim SF, Chuan KH, Liu S, Loh SOH, Chung BYF, Ong CC and Song Z. (2006) RNAi suppression of Bax and Bak enhances cell viability in batch and fed-batch cultures of CHO cells. Metab. Eng. 8:509-522